The encapsulation efficiency of a targeted drug delivery system consisting of Herceptinloaded polymers an evaluation and characterization

There is enough evidence on nature on nanotechnology. For instance, the DNA molecules width is about 2.5nm, the thickness of the human hair is about 10,000nm thick, and the diameter of a hydrogen atom is about 0.1nm that is too small to be seen by human eyes. Nature also produces nanostructures that offer functional proteins, which are of great significance at the cellular level. It is argued that one of the functions of these proteins found in cells is nanotechnological separations. Molecular motors that comprise the human muscles are complex nanomachines that convert chemical energy to mechanical energy with high efficiency. Ribosomes can also produce protein molecules with high precision and photosynthesis is carried out in plants by nanosize cells that use energy to synthesize organic compounds with the use of cheap raw materials (Bender amp. Nahta, 2008).
Pharmacists have confirmed the effectiveness of using Herceptin. Although the medication has raised controversies among scholars, it is confirmed that the medication is of paramount importance in the process of healing. According to Sauter et al. 2009, Herceptinis anticancer medication used mainly to treat early stage malignant cancer of the breast and in some cases cancer of the stomach. This is a condition that has for a long time given medical researchers sleepless nights as many of the medications used currently have been found to have severe side effects. In the process of treatment, Herceptin acts on those tumors which produce the Human Epidermal growth Receptor (HER2 protein) more than the normal amount.
Human Epidermal growth Receptor 2 is a protein which enhances the growth of cancer cells. The presence of the cancerous cells leads to excessive production of the HER2 protein hence promoting the metastasis of the cancerous cells to a larger part of the affected area. The